解直角三角形教案

时间:2024-09-30 16:05:06
解直角三角形教案

解直角三角形教案

作为一无名无私奉献的教育工作者,往往需要进行教案编写工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。快来参考教案是怎么写的吧!以下是小编帮大家整理的解直角三角形教案,欢迎大家分享。

解直角三角形教案1

1、教学目标

1.使学生掌握直角三角形的边角关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形;

2.通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力;

3.通过本节的学习,向学生渗透数形结合的数学思想,培养他们良好的学习习惯.

2、学情分析

本班学生对前面学过的三角函数基本知识点掌握较好,可以继续进行新授课。

3、重点难点

本节的重点和难点是直角三角形的解法.为了使学生熟练掌握直角三角形的解法,首先要使学生知道什么叫做解直角三角形,直角三角形中三边之间的关系,两锐角之间的关系,边角之间的关系.正确选用这些关系,是正确、迅速地解直角三角形的关键.

4、教学过程

4.1第一学时

教学活动

活动1

【导入】课前预习

活动2

【导入】完成以下题目

1、在直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B这五个元素之间有哪些等量关系呢?

(1)边角之间关系:sinA=_cosA=_tanA=_cotA=__

(2)三边之间关系:勾股定理_______

(3)锐角之间关系:________。

2、在Rt△ABC中,∠C=90°,AB=13,AC=12,求∠A的各个三角函数值。

3、自述30°、45°、60°角的正弦、余弦、正切、余切值。

4、在Rt△ABC中,∠C=90°,已知c=15,∠B=60°,求a.

5、在Rt△ABC中,∠C=90°,已知∠A=45°,b=3,求c.

你有哪些疑问?小组交流讨论。

生甲:如果不是特殊值,怎样求角的度数呢?

生乙:我想知道已知哪些条件能解出直角三角形?

◆师:你有什么看法?

生乙:从课前预习看,知道了特殊的一边一角也能解,那么两边呢?两角呢?还有三边、三角呢?

◆师:好!这位同学不但提的问题非常好,而且具有非凡的观察力,那么他的意见对不对?这正是这一节我们要来探究和解决的:怎样解直角三角形以及解直角三角形所需的条件。

◆师:把握了直角三角形边角之间的各种关系,我们就能解决与直角三角形有关的问题了,这节课我们就来学习“解直角三角形”,解决同学们的疑问。

设计意图:数学知识是环环相扣的,课前预习能让学生为接下来的学习作很好的铺垫和自然的过渡。带着他们的疑问来学习解直角三角形,去探索解直角三角形的条件,激发了他们研究的兴趣和探究的激情。

【探究新知】

例1、在Rt△ABC中,∠C=90°,由下列条件解直角三角形:

已知a=5,b=

◆师:(1)题目中已知哪些条件,还要求哪些条件?

(2)请同学们独立思考,自己解决。

(3)小组讨论一下各自的解题思路,在班内交流展示。

▲解(1)利用勾股定理,先求得c值.由a=c,可得∠A=30°,∠B=60°。

(2)由勾股定理求得c后,可利用三角函数tanB=

=,求得∠B=60°,两锐角互余得∠A=30°。

(3)由于知道了两条直角边,可直接利用三角函数求得∠A,得到∠B,再通过函数值求c 。

◆师:通过上面的例子,你们知道“解直角三角形”的含义吗?

学生讨论得出“解直角三角形”的含义(课件展示):“在直角三角形中,由已知元素求出未知元素的过程,叫做解直角三角形。”

(学生讨论过程中需使其理解三角形中“元素”的内涵,即条件。)

设计意图:让学生初步体会解直角三角形的含义、步骤及解题过程。通过展示他们的思路让他们更好的体会已知直角三角形的两条边能解出直角三角形。

◆师:上面的例子是给了两条边,我们求出了其他元素,解决了同学们的一个疑问。

那么已知直角三角形的一条边和一个角,这个角不是特殊值能不能解出直角三角形呢?以及学习了解直角三角形在实际生活中有什么用处呢?

带着这些疑问结合实际问题我们来学习例2:(课件展示例2涉及的场景--虎门炮台图,让同学们欣赏并思考问题)学习了之后,你就会有很深的'体会。

学习例2:(课件展示涉及的场景--虎门炮台图)

例2:

如图,在虎门有东西两炮台A、B相距20xx米,同时发现入侵敌舰C,炮台A测得敌舰C在它的南偏东40°的方向,炮台B测得敌舰C在它的正南方,试求敌舰与两炮台的距离(精确到1米)。

总结(1)由∠DAC=40°得∠BAC=50°,用∠BAC的三角函数求得BC≈2384米,AC≈3111米。

(2)由∠BAC的三角函数求得BC≈2384米,再由勾股定理求得AC≈3112米。

学生讨论得出各法,分析比较(课件展示),得出——使用题目中原有的条件,可使结果更精确。

设计意图:(1)转化的数学思想方法的应用,把实际问题转化为数学模型解决

(2)巩固解直角三角形的定义和目标,初步体会解直角三角形的方法——直角三角形的边角关系(勾股定理、两锐角互余、锐角三角函数)使学生体会到“在直角三角形中,除直角外,只要知道其中2个元素(至少有一个是边)就可以求出其余的3个元素”

交流讨论;归纳总结

◆师:通过对上面例题的学习,如果让你设计一个关于解直角三角形的题目,你会给题目几个条件?如果只给两个角,可以吗?(几个学生展示)

学生讨论分析,得出结论。

◆师:通过上面两个例子的学习,你们知道解直角三角形有几种情况吗?

学生交流讨论归纳(课件展示讨论的条件)

总结:解直角三角形,有下面两种情况:(其中至少有一边)

(1)已知两条边(一直角边一斜边;两直角边)

(2)已知一条边和一个锐角(一直边一锐角;一斜边一锐角)

设计意图:这是这节课的重点,让学生归纳和讨论,能让他们深刻理解解直角三角形的有几种情况,必须满足什么条件能解出直角三角形,给学生展示的平台,增强学生的兴趣及自信心。

【知识应用,及时反馈】

1、在Rt△ABC中,∠C=90°,已知AB=2,∠A= ……此处隐藏2334个字……完成

abcAB

1√√

2√√

3√b=acotA√

4√b=atanB√

5√√

6a=btanA√√

7a=bcotB√√

8a=csinAb=ccosA√√

9a=ccosBb=csinB√√

10不可求不可求不可求√√

注:上表中“√”表示已知。

四、布置作业

解直角三角形教案4

一、教学目标

(一)知识教学点

巩固用三角函数有关知识解决问题,学会解决坡度问题。

(二)能力目标

逐步培养学生分析问题、解决问题的能力;渗透数形结合的数学思想和方法。

(三)德育目标

培养学生用数学的意识,渗透理论联系实际的观点。

二、教学重点、难点和疑点

1.重点:解决有关坡度的实际问题。

2.难点:理解坡度的有关术语。

3.疑点:对于坡度i表示成1∶m的形式学生易疏忽,教学中应着重强调,引起学生的重视。

三、教学过程

1.创设情境,导入新课。

例 同学们,如果你是修建三峡大坝的工程师,现在有这样一个问题请你解决:如图

水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡AB的坡度i 1∶3,斜坡CD的坡度i=1∶2.5,求斜坡AB的坡面角α,坝底宽AD和斜坡AB的长(精确到0.1m)。

同学们因为你称他们为工程师而骄傲,满腔热情,但一见问题又手足失措,因为连题中的术语坡度、坡角等他们都不清楚。这时,教师应根据学生想学的心情,及时点拨。

通过前面例题的教学,学生已基本了解解实际应用题的方法,会将实际问题抽象为几何问题加以解决。但此题中提到的坡度与坡角的概念对学生来说比较生疏,同时这两个概念在实际生产、生活中又有十分重要的应用,因此本节课关键是使学生理解坡度与坡角的意义。

解直角三角形教案5

1教学目标

(一)知识目标

1、使学生理解直角三角形中五个元素的关系,及什么是解直角三角形;2、会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.

(二)能力训练点

1、通过综合运用勾股定理,直角三角形的两个锐角互余及边角之间的关系解直角三角形,逐步培养学生分析问题、解决问题的能力;2通过数行结合的运用,培养学生添加适当辅助线的能力。

(三)情感目标

渗透数形结合的数学思想,培养学生学以致用的良好的学习习惯.

2学情分析

九年级学生已经牢固掌握了勾股定理,也刚刚学习过锐角三角函数,但锐角三角函数的运用不一定熟练,综合运用所学知识解决问题,将实际问题抽象为数学问题的能力都比较差,因此要在本节课进行有意识的培养。

为实现本节既定的教学目标,根据教材特点和学生实际水平对本节教学采用的基本策略是:

①创设问题情境,激发学生思维的主动性。

②以实际问题为载体,结合简单教具及多媒体提供的图象,引导学生建立数学模型,把实际问题抽象为数学问题。

③把实际问题中提供的条件转化为数学问题中的数量,掌握探索解决问题的思想和方法。

④课堂尽量为学生提供探索、交流的空间,发动学生既独立又合作的愉快的学习。

由于大部分学生的阅读分析能力相对较弱,教学中引导学生讨论、交流,罗列出问题中的所有已知条件、未知条件,探索已知与未知之间的数量关系,进而结合勾股定理、三角函数关系式寻求解决的方案,从而达到解决的目的。

有效的数学学习活动,不能单纯地依赖模仿与记忆。动手实践、自主探索与合作交流是学生学习数学的重要方式。本节课的例题与练习题的已知、未知都有所不同,合理引导,利用这种“不同”让学生在探究学习中得到提高,获得知识,也是本节课追求的主要目标。

我打算采用“创设情境———自主探究———合作交流———达标训练———反思归纳”的流程来进行本节课的教学。

3重点难点

1.重点:直角三角形的解法.

2.难点:把实际问题抽象为数学问题,建立数学模型;三角函数在解直角三角形中的灵活运用;j解直角三角形时,在已知的两个元素中,为什么至少有一个元素是边.

4教学过程4、1第一学时教学活动活动1【讲授】教学活动

1.我们已经掌握了Rt△ABC的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又可启发引导学生思考,为什么两个已知元素中必有一条边呢?从而激发学生的学习、探索热情。

2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师让学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形).

3.例题评析

例1在Rt△ABC中,∠C为直角,AC= BC=,解这个三角形.

例2在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且b= 20 =35,解这个三角形(精确到0、1).

解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题的能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.

完成之后引导学生小结“已知一边一角,如何解直角三角形?”

答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底.

议一议

在直角三角形中,

(1)已知a,b,怎样求∠B的度数?

(2)已知a,c,怎样求∠B的度数?

(3)已知b,c,怎样求∠B的度数?

你能总结一下已知两边解直角三角形的方法吗?与同伴交流。

(三)巩固练习

在△ABC中,∠C为直角,AC=4,BC=4,解此直角三角形。课本74页。

1、找四名学生板演,重视过程的规范性和完整性;2、学生独立完成,教师简评。

解直角三角形是解实际应用题的基础,因此必须使学生熟练掌握.为此,教材配备了练习针对各种条件,使学生熟练解直角三角形,并培养学生运算能力.

试一试

(四)总结与扩展

引导学生小结:

1、在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素.

2、解决问题要结合图形(没有图形时要先画草图)。

《解直角三角形教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式